skip to main content


Search for: All records

Creators/Authors contains: "Wiescher, M. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The abundance and distribution of44Ti tells us about the nature of the core-collapse supernovae explosions. There is a need to understand the nuclear reaction network creating and destroying44Ti in order to use it as a probe for the explosive mechanism. The44Ti(α, p)47V reaction is a very important reaction and it controls the destruction of44Ti. Difficulties with direct measurements have led to an attempt to study this reaction indirectly. Here, the first step of the indirect study which is the identification of levels of the compound nucleus48Cr is presented. A 100-MeV proton beam was incident on a50Cr target. States in48Cr were populated in the50Cr(p, t)48Cr reaction. The tritons were momentum-analysed in the K600 Q2D magnetic spectrometer at iThemba LABS.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. A new Magnetic Recoil Spectrometer (MRSt) is designed to provide time-resolved measurements of the energy spectrum of neutrons emanating from an inertial confinement fusion implosion at the National Ignition Facility. At present, time integrated parameters are being measured using the existing magnet recoil and neutron time-of-flight spectrometers. The capability of high energy resolution of 2 keV and the extension to high time resolution of about 20 ps are expected to improve our understanding of conditions required for successful fusion experiments. The layout, ion-optics, and specifications of the MRSt will be presented.

     
    more » « less